
d02 – Ordinary Differential Equations d02gac

nag ode bvp fd nonlin fixedbc (d02gac)

1. Purpose

nag ode bvp fd nonlin fixedbc (d02gac) solves the two-point boundary-value problem with assigned
boundary values for a system of ordinary differential equations, using a deferred correction technique
and a Newton iteration.

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_bvp_fd_nonlin_fixedbc(Integer neq,
void (*fcn)(Integer neq, double x, double y[], double f[],

Nag_User *comm),
double a, double b, double u[], Integer v[],
Integer mnp, Integer *np, double x[], double y[],
double tol, Nag_User *comm, NagError *fail)

3. Description

This function solves a two-point boundary-value problem for a system of neq differential equations
in the interval [a, b]. The system is written in the form

y′
i = fi(x, y1, y2, . . . , yneq) , i = 1, 2, . . . , neq (1)

and the derivatives are evaluated by a function fcn supplied by the user. Initially, neq boundary
values of the variables yi must be specified (assigned), some at a and some at b. The user also
supplies estimates of the remaining neq boundary values and all the boundary values are used in
constructing an initial approximation to the solution. This approximate solution is corrected by
a finite-difference technique with deferred correction allied with a Newton iteration to solve the
finite-difference equations. The technique used is described fully in Pereyra(1979). The Newton

iteration requires a Jacobian matrix ∂fi
∂yj

and this is calculated by numerical differentiation using

an algorithm described in Curtis et al (1974).
The user supplies an absolute error tolerance and may also supply an initial mesh for the
construction of the finite-difference equations (alternatively a default mesh is used). The algorithm
constructs a solution on a mesh defined by adding points to the initial mesh. This solution is chosen
so that the error is everywhere less than the user’s tolerance and so that the error is approximately
equidistributed on the final mesh. The solution is returned on this final mesh.
If the solution is required at a few specific points then these should be included in the initial mesh.
If on the other hand the solution is required at several specific points then the user should use the
interpolation routines provided in Chapter E01 if these points do not themselves form a convenient
mesh.

4. Parameters

neq
Input: the number of equations.
Constraint: neq ≥ 2.

fcn
The function fcn must evaluate the functions fi (i.e., the derivatives y′

i) at the general point
x.
The specification of fcn is:

[NP3275/5/pdf] 3.d02gac.1

nag ode bvp fd nonlin fixedbc NAG C Library Manual

void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm)

neq
Input: the number of differential equations.

x
Input: the value of the argument x.

y[neq]
Input: y[i − 1] holds the value of the argument yi, for i = 1, 2, . . . ,neq.

f[neq]
Output: f [i − 1] must contain the values of fi, for i = 1, 2, . . . , neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

a
Input: the left-hand boundary point, a.

b
Input: the right-hand boundary point, b.
Constraint: b > a.

u[neq][2]
Input: u[i − 1][0] must be set to the known (assigned) or estimated values of yi at a and
u[i − 1][1] must be set to the known or estimated values of yi at b, for i = 1, 2, . . . ,neq.

v[neq][2]
Input: v[i− 1][j − 1] must be set to 0 if u[i− 1][j − 1] is a known (assigned) value and to 1 if
u[i − 1][j − 1] is an estimated value, i = 1, 2, . . . ,neq; j = 1, 2.
Constraint: precisely neq of the v[i− 1][j − 1] must be set to 0 i.e., precisely neq of u[i− 1][0]
and u[i − 1][1] must be known values and these must not be all at a or b.

mnp
Input: the maximum permitted number of mesh points.
Constraint: mnp ≥ 32.

np
Input: determines whether a default or user-supplied initial mesh is used. If np = 0, then np
is set to a default value of 4 and a corresponding equispaced mesh x[0], x[1], . . . , x[np − 1] is
used. If np ≥ 4, then the user must define an initial mesh using the array x as described.
Constraint: np = 0 or 4 ≤ np ≤ mnp.
Output: the number of points in the final (returned) mesh.

x[mnp]
Input: if np ≥ 4 (see np above), the first np elements must define an initial mesh. Otherwise
the elements of x need not be set.
Constraint:

a = x[0] < x[1] < . . . < x[np − 1] = b for np ≥ 4 (2)

Output: x[0],x[1],. . .,x[np-1] define the final mesh (with the returned value of np) satisfying
the relation (2).

y[neq][mnp]
Output: the approximate solution zj(xi) satisfying (3), on the final mesh, that is

y[j − 1][i − 1] = zj(xi) , i = 1, 2, . . . , np; j = 1, 2, . . . , neq,

where np is the number of points in the final mesh.
The remaining columns of y are not used.

3.d02gac.2 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02gac

tol
Input: a positive absolute error tolerance. If

a = x1 < x2 < . . . < xnp = b

is the final mesh, zj(xi) is the jth component of the approximate solution at xi, and yj(xi)
is the jth component of the true solution of equation (1) (see Section 3) and the boundary
conditions, then, except in extreme cases, it is expected that

|zj(xi) − yj(xi)| ≤ tol , i = 1, 2, . . . , np; j = 1, 2, . . . , neq (3)

Constraint: tol > 0.0.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: The pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function fcn(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, neq must not be less than 2: neq = 〈value〉.
On entry, mnp must not be less than 32: mnp = 〈value〉.

NE REAL ARG LE
On entry, tol must not be less than or equal to 0.0: tol = 〈value〉.

NE 2 REAL ARG LE
On entry b = 〈value〉 while a = 〈value〉. These parameters must satisfy b > a.

NE INT RANGE CONS 2
On entry np = 〈value〉 and mnp = 〈value〉. The parameter np must satisfy either
4 ≤ np ≤ mnp or np = 0.

NE LF B VAL
The number of known left boundary values must be less than the number of equations: The
number of known left boundary values = 〈value〉: The number of equations = 〈value〉.

NE RT B VAL
The number of known right boundary values must be less than the number of equations: The
number of known right boundary values = 〈value〉: The number of equations = 〈value〉.

NE LFRT B VAL
The sum of known left and right boundary values must equal the number of equations: The
number of known left boundary values = 〈value〉: The number of known right boundary
values = 〈value〉: The number of equations = 〈value〉.

NE LF B MESH
On entry, the left boundary value a, has not been set to x[0]: a = 〈value〉, x[0] = 〈value〉.

NE RT B MESH
On entry, the right boundary value b, has not been set to x [np−1]: b = 〈value〉, x[np−1] =
〈value〉.

NE NOT STRICTLY INCREASING
The sequence x is not strictly increasing: x[〈value〉] = 〈value〉, x[〈value〉] = 〈value〉

[NP3275/5/pdf] 3.d02gac.3

nag ode bvp fd nonlin fixedbc NAG C Library Manual

NE ALLOC FAIL
Memory allocation failed.

NE CONV MESH
A finer mesh is required for the accuracy requested; that is mnp is not large enough.

NE CONV MESH INIT
The Newton iteration failed to converge on the initial mesh. This may be due to the initial
mesh having too few points or the initial approximate solution being too inaccurate. Try
using nag ode bvp fd nonlin gen (d02rac).

NE CONV ROUNDOFF
Solution cannot be improved due to roundoff error. Too much accuracy might have been
requested.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

6. Further Comments
The time taken by the function depends on the difficulty of the problem, the number of mesh points
used (and the number of different meshes used), the number of Newton iterations and the number
of deferred corrections.
A common cause of convergence problems in the Newton iteration is the user specifying too few
points in the initial mesh. Although the routine adds points to the mesh to improve accuracy it is
unable to do so until the solution on the initial mesh has been calculated in the Newton iteration.
If the known and estimated boundary values are set to zero, the routine constructs a zero initial
approximation and in many cases the Jacobian is singular when evaluated for this approximation,
leading to the breakdown of the Newton iteration.
The user may be unable to provide a sufficiently good choice of initial mesh and estimated boundary
values, and hence the Newton iteration may never converge. In this case the continuation facility
provided in nag ode bvp fd nonlin gen (d02rac) is recommended.
In the case where the user wishes to solve a sequence of similar problems, the final mesh from
solving one case is strongly recommended as the initial mesh for the next.

6.1. Accuracy

The solution returned by the routine will be accurate to the user’s tolerance as defined by the relation
(3) except in extreme circumstances. If too many points are specified in the initial mesh, the solution
may be more accurate than requested and the error may not be approximately equidistributed.

6.2. References

Curtis A R, Powell M J D and Reid J K (1974) On the Estimation of Sparse Jacobian Matrices.
J. Inst. Maths. Applics. 13 117–119.

Pereyra V (1979) PASVA3: An Adaptive Finite-Difference Fortran Program for First Order
Nonlinear, Ordinary Boundary Problems. In: ‘Codes for Boundary Value Problems in Ordinary
Differential Equations.’ Lecture Notes in Computer Science (ed B Childs, M Scott, J W Daniel,
E Denman and P Nelson) 76 Springer-Verlag.

7. See Also

nag ode bvp fd lin gen (d02gbc)
nag ode bvp fd nonlin gen (d02rac)

3.d02gac.4 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02gac

8. Example

We solve the differential equation

y′′′ = −yy′′ − β(1 − y′2)

with boundary conditions

y(0) = y′(0) = 0, y′(10) = 1

for β = 0.0 and β = 0.2 to an accuracy specified by tol = 1.0e−3. We solve first the simpler problem
with β = 0.0 using an equispaced mesh of 26 points and then we solve the problem with β = 0.2
using the final mesh from the first problem.

8.1. Program Text

/* nag_ode_bvp_fd_nonlin_fixedbc(d02gac) Example Program
*
* Copyright 1994 Numerical Algorithms Group.
*
* Mark 3, 1994.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double y[], double f[],

Nag_User *comm);
#else
static void fcn();
#endif

#define NEQ 3
#define MNP 40

main()
{
double a, b;
Integer i, j, k;
double u[NEQ][2], x[MNP], y[NEQ][MNP];
Integer v[NEQ][2];
Integer np;
double tol;
static NagError fail;
Integer neq, mnp;
double beta;
Nag_User comm;

Vprintf("d02gac Example Program Results\n");

/* For communication with function fcn()
* assign address of beta to comm.p.
*/

comm.p = (Pointer)β
neq = NEQ;
mnp = MNP;
tol = 0.001;
np = 26;
a = 0.0;
b = 10.0;
beta = 0.0;
for (i=0; i<neq; ++i)

for (j=0; j<2; ++j)
{
u[i][j] = 0.0;

[NP3275/5/pdf] 3.d02gac.5

nag ode bvp fd nonlin fixedbc NAG C Library Manual

v[i][j] = 0;
}

v[2][0] = 1;
v[0][1] = 1;
v[2][1] = 1;
u[1][1] = 1.0;
u[0][1] = b;
x[0] = a;
for (i=2; i<=np-1; ++i)

x[i-1] = ((double)(np-i)*a + (double)(i-1)*b)/
(double)(np-1);

x[np-1] = b;
for (k=1; k<=2; ++k)

{
Vprintf("\nProblem with beta = %7.4f\n", beta);
d02gac(neq, fcn, a, b, (double *)u, (Integer *)v, mnp,

&np,(double *)x, (double *)y, tol, &comm, &fail);

if (fail.code == NE_NOERROR || fail.code == NE_CONV_ROUNDOFF)
{
Vprintf ("\nSolution on final mesh of %ld points\n", np);
Vprintf (" X Y(1) Y(2) Y(3)\n");
for (i=0; i<=np-1; ++i)
{
Vprintf (" %9.4f ", x[i]);
for (j=0; j<neq; ++j)

Vprintf (" %9.4f ", y[j][i]);
Vprintf("\n");

}
beta += 0.2;

}
}

exit(EXIT_SUCCESS);
}

#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm)
#else

static void fcn(neq, x, y, f, comm)
Integer neq;
double x;
double y[], f[];
Nag_User *comm;

#endif
{
double *beta = (double *)comm->p;

f[0] = y[1];
f[1] = y[2];
f[2] = -y[0] * y[2] - *beta * (1.0-y[1]*y[1]);

}

8.2. Program Data

None.

8.3. Program Results

d02gac Example Program Results

Problem with beta = 0.0000

Solution on final mesh of 26 points
X Y(1) Y(2) Y(3)
0.0000 0.0000 0.0000 0.4695
0.4000 0.0375 0.1876 0.4673
0.8000 0.1497 0.3719 0.4511
1.2000 0.3336 0.5450 0.4104
1.6000 0.5828 0.6963 0.3424

3.d02gac.6 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02gac

2.0000 0.8864 0.8163 0.2558
2.4000 1.2309 0.9009 0.1678
2.8000 1.6026 0.9529 0.0953
3.2000 1.9900 0.9805 0.0464
3.6000 2.3851 0.9930 0.0193
4.0000 2.7834 0.9978 0.0069
4.4000 3.1829 0.9994 0.0021
4.8000 3.5828 0.9999 0.0006
5.2000 3.9828 1.0000 0.0001
5.6000 4.3828 1.0000 0.0000
6.0000 4.7828 1.0000 0.0000
6.4000 5.1828 1.0000 0.0000
6.8000 5.5828 1.0000 0.0000
7.2000 5.9828 1.0000 0.0000
7.6000 6.3828 1.0000 0.0000
8.0000 6.7828 1.0000 0.0000
8.4000 7.1828 1.0000 0.0000
8.8000 7.5828 1.0000 0.0000
9.2000 7.9828 1.0000 0.0000
9.6000 8.3828 1.0000 0.0000

10.0000 8.7828 1.0000 0.0000

Problem with beta = 0.2000

Solution on final mesh of 26 points
X Y(1) Y(2) Y(3)
0.0000 0.0000 0.0000 0.6865
0.4000 0.0528 0.2584 0.6040
0.8000 0.2020 0.4814 0.5091
1.2000 0.4324 0.6636 0.4001
1.6000 0.7268 0.8007 0.2860
2.0000 1.0670 0.8939 0.1821
2.4000 1.4368 0.9498 0.1017
2.8000 1.8233 0.9791 0.0492
3.2000 2.2180 0.9924 0.0206
3.6000 2.6162 0.9976 0.0074
4.0000 3.0157 0.9993 0.0023
4.4000 3.4156 0.9998 0.0006
4.8000 3.8155 1.0000 0.0001
5.2000 4.2155 1.0000 0.0000
5.6000 4.6155 1.0000 0.0000
6.0000 5.0155 1.0000 0.0000
6.4000 5.4155 1.0000 0.0000
6.8000 5.8155 1.0000 0.0000
7.2000 6.2155 1.0000 0.0000
7.6000 6.6155 1.0000 0.0000
8.0000 7.0155 1.0000 0.0000
8.4000 7.4155 1.0000 0.0000
8.8000 7.8155 1.0000 0.0000
9.2000 8.2155 1.0000 0.0000
9.6000 8.6155 1.0000 0.0000

10.0000 9.0155 1.0000 0.0000

[NP3275/5/pdf] 3.d02gac.7

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

